Assembly of a Chinese 3D Delta Printer Kit

I got myself a Chinese 3D printer kit. It is a delta configuration build after the Reprap Kossel Mini . The Set included:

  • Hardware (linear rails, belts, motors, screws feathers, print surface)
  • Electronics (RAMPS 1.4, LC-display, SD-card, switches, cables)
  • Extruder (direct bowden extruder)
  • Hotend (E3D clone with heater cartridge and thermistor)
  • Heated Bed PCB (for heating up the print surface)
  • Free PLA filament
Contents of the two packages

Everything was shiped with DHL Express from Hong Kong and arrived 7 days after purchasing. Which is very nice for a package from china. Shipping was only 32$ extra. In Germay customs claimed another 68€ so in total 370€ which is not too bad for the two packages containing (hopefully) all of the parts needed for assembly.

Unpacking all the boxes leaves us with heaps of material. The threr cardboard boxes contain all of the parts. The tube contains the linear slides for the towers. The black beams are for the frame and the red PCB is the heater for the print surface. Included in the package were all the Allen keys needed for assembly. A lot of M3, M4 and M5 screws, nuts and various bits. An SD card with the necessary firmware and build instructions were included as well. All the mechanical connections are printed with PLA in a OK quality. The dimensions are met so I was no problem to put everything together.

All the assembly parts layed out on the table

With my comprehensive knowledge of simplified Chinese symbols, which is none, I could read some of the documentation. Luckily the internet is full of assembly instructions for the reprap Kossel mini.

After a few hours the mechanics where done and everything moves smoothly. After adjusting the delta values in the firmware, z height and probe offset for finding the true Z0 position it printed with the included PLA filament. The test cube was sliced with slic3r with a configuration I came up with. After a few layers the extruder stopped working and nothing was fed into the hotend anymore. After some fiddling around with the temperature and manually trying to push the filament through the hotend I dissembled the whole hotend part. It showed that the free filament sample had a huge part of 2mm diameter instead of 1.78, which i measured before configuring the slicer. Due to the large diamter the filament got stuck in the cold part of the hotend. Stupid thing but easyly fixable. Pushing with a small screwdriver from the nozzle side of the cold part released the stuck piece of filament.
Well the free sample found its way to the bin and a spool of light blue high quality PLA found its way to the extruder and out of it again. Tightening the hotend in a hot state will hopefully do the job.

The thing is running, litterally. A nice piece of hardware

If you are looking for a nice kit to build yourself a kossel mini 3D printer you can go for one of the cheap sets from china. But keep in mind, you are in for a steep learning curve. If you want to print 3D models and not fiddle around to much, buy something else.

And it burns burns burns

Gestern stand ein relativ großes unscheinbares Paket vor der Tür. Eingewickelt in gelben Klebeband und mit einer Zollerklärung kann es nur eins bedeuten: Mein DIY Lasercutter aus China ist angekommen. Im Paket befindet sich neben dem mechanischen Komponenten für die Gantry auch die Elektronik, sowie Motoren und Software. Alles gut verpackt in einzelnen Tütchen und Luftpolsterfolie. Es macht einen soliden Eindruck und der Zusammenbau gestaltet sich auch relativ einfach. Allerdings gibt es keine gedruckte Anleitung und die Dateinamen auf der beigelegten MicroSD Karte sind alle in Chinesisch. Das führt unter meinem Windows leider zu Darstellungsproblemen und so kann ich einige Dateien nicht öffnen. Einige Bilder kann ich aber Anschauen und somit lässt sich der Zusammenbau einigermaßen gut gestalten. Nach knapp 2 Stunden steht das Gerät auch schon.

Dem Set ist keine Laser Schutzbrille beigelegt. Allerdings bin ich mir nicht sicher, ob ich auf eine chinesische Laserschutzbrille vertrauen würde und habe deshalb eine ordentliche in Deutschland gekauft. Das Gerät kommt außerdem mit einem amerikanischen Stecker für das Netzteil. Doch auch das ist kein großes Hindernis. 

Die Software zum Erzeugen der Daten für den Lasercutter ist die Open Source Software Inkscape mit einem Plugin für Lasercutter. Mit Inkscape können Grafiken als Pfade, also Vektorgrafiken erzeugt werden. Die aktuelle Version von Inkscape hat Probleme mit dem Plugin, aber dem Set war die Version 0.48.4 beigelegt, die macht keine Probleme.
Den Laser kann man manuell verschieben und somit auf die ungefähre Nullposition bringen. Genau referenzieren geht leider (noch) nicht. Die Laserdiode ist stark genug um das Holzbrett, auf dem der Aufbau steht zu verbrennen. in wiefern man damit Holz schneiden kann werde ich noch sehen. Ansonsten eine super nette Spielerei. Nur stinkt es in meinem Arbeitszimmer jetzt nicht nur nach Plastik, sondern auch nach verbranntem Holz… Zeit über eine Lüftung nachzudenken, anstatt immer wieder das Fenster aufzulassen. Vor allem im Winter…

[youtube=https://www.youtube.com/watch?v=W8sFDGa8JDg&w=320&h=266]

Android im Rückspiegel

Die Chinesen haben mal wieder eine geniale Sache gebaut. Ein Rückspiegel mit eingebautem Android-Tablet. Alles drin, von W-LAN über SD-Karte mit Straßenkarten für Europa ist alles drin.

Rückspiegel mit 5″ Android Tablet. Blau verspiegelter Reflektor

  • Frontkammera
  • Rückfahrkammera
  • Beschleunigungssensor
  • Navigation weltweit

Das Ganze wird über den bestehenden Rückspiegel gehängt und mit Gummibändern befestigt. Kleines Manko ist, dass die aktuellen Verkehrsbehinderungen nicht online aktualisiert werden können. Aber das kann gut daran liegen, dass die Software eine ‚offizelle‘ chinesische Version von iGo ist. Dank des Android-Betriebsystems ist allerdings die Auswahl an Navigationsapps sehr groß. Welche sich als geeignet erweisen wird, bleibt noch offen. Auch habe ich noch keine Update vom Händler erhalten. Das sollte mir dann die aktuellen Kartendaten geben. Anpassen musste ich nur die Tastatur, denn es ist keine außer eine Pinyin-Eingabe installiert. 

Was mich ein wenig verwundert ist, dass das Gerät sofort ausschalten möchte, wenn man es vom Ladegerät trennt. Ich kann verstehen, dass es für den Gebrauch als Navi nicht unbedingt dauernd an sein muss, allerdings ist es bestimmt hilfreich, wenn es nicht immer komplett starten muss. Ein Tiefschlafmodus wäre also wünschenswert. Leider geht auch mit abgeschalteten Bildschirm die Batterie ganz schnell in die Knie. In dem Gehäuse ist auf jeden Fall genug Platz für eine anständige Batterie, mal schauen wie groß die ist.
Kleine Batterie, daher kurze Laufzeit ohne Ladegerät
Mit 950mAh kommen wir natürlich nicht sonderlich weit. Das erklärt auch, warum dem Teil ein 10W Ladegerät beiliegt. Mit einem Labornetzteil zeigt sich ein Strom von 700mA beim Laden. Das Display benötigt alleine bereits 100mA und daher ist der 10 Minuten Ohne-Strom-Shutdown Timer verständlich. Es folgt der Praxistest im Auto.Es zeigt sich auch, dass der Spiegel sehr groß ist. Schätzungsweise 2cm höher und locker 5cm breiter als mein serienmäßig verbauter Spiegel.

[youtube=https://www.youtube.com/watch?v=o7b56tteeDU&w=320&h=266]

Das Video zeigt ein Ausschnitt bei strahlendem Sonnenschein. Im Dunkeln und bei schlechter Witterung sind die Aufnahmen wohl nicht ganz so schön anzuschauen. Auch die Rückfahrkamera habe ich noch nicht getestet, dazu muss ich sie erst mal sinnvoll befestigen.

Das ESP-12 3$ WiFi Modul, oder wo könnte man überall Internet einbauen

Seit geraumer Zeit gibt es, vor allem aus China, ein Modul, dass einen ESP8266 Mikrocontroller, ein Flashspeicher, onboard Antenne und einige GPIOs besitzt. Verfügbar ist das Modul in so weit ich herausgefunden habe 14 verschiedenen Ausführungen, vom blankliegenden Controller bis hin zum voll geschirmten Modulpaket, dass die GPIOs als Lötpunkte auf der unterseite besitzt. Die Module sind alle über die üblichen Kanäle zu beziehen. Dabei sind auch die üblichen Lieferzeiten zu erwarten.

Aufbau des Moduls

ESP-12 Modul mit Breakout-Board
Ich habe mir das ESP-12 Modul mit einem Breakout-Board bestellt. Dadurch ist es möglich das Modul im Steckbrett unterzubringen und so schnell eine akzeptable Verkabelung zu erreichen. Das Modul besitzt eine LED, eine PCB-Antenne und ist ansonsten unter einem Metalldeckel abgeschirmt. Dieser Schirm trägt die Kennzeichnung, dass das Modul die Modellnummer ESP826WLAN. Mit diesen Parametern ist es hervorragend geeignet in einem WLAN Netzwerk eingesetzt zu werden. Das Modul hat eine Größe von 16x24mm Die seitlich angebrachten Lötpads sind mit 2mm Abstand angeordnet und befinden sich nicht im Bereich der Antenne. Die LED kann über den Controller gesteuert werden. Die beiden Lötpads für SMD Widerstände sind einam mit GPIO 15 und Chpi_Enable verbunden. Sie können dauerhaft auf GND bzw. VCC gelegt werden. Wenn anstatt der hier verwendeten Lötbrücke ein 10k 0603 SMD Widerstand eingelötet wird, können die Pins auch noch verwendet werden. Ich hatte nur gerade keine griffbereit.
6MOD besitzt und von der Firma AI-THINKER hergestellt wurde. Es besitzt eine FCC-Zulassung, arbeitet auf dem ISM 2,4GHz Band, hat eine Sendeleistung von +25dBm und verwendet das Funkprotokoll IEEE 802.11b/g/n auch bekannt als

Espressif SDK und weitere Betriebsmodi

Die Firma Espressif Systems hat für den ESP8266 eine SDK herausgebracht, das es ermöglicht die Module in zwei verschiedenen Betriebsmodi zu verwenden. Einmal als eigenständiges Modul, dass mit UART Befehlen gesteuert werden kann. Andererseits biete das GitHub von Espressif ein SDK zur Entwicklung von Software mit Hilfe von FreeRTOS in C. Aufbauend auf diesem SDK wurde NodeMcu entwickelt. NodeMcu bringt die Skriptsprache Lua auf das System und ermöglicht es den Microcontroller mit einfach zu scheibenden Skripten zu verwenden. Auch dieses Projekt ist Open-Source und auf Github verfügbar. 

Flashen der Firmware

NodeMcu Firmware Programmer
Das Flashen von Mikrocontrollern kam in der Vergangenheit immer etwas arbeitsaufwändig daher. Meistens wurden spezielle Programmieradapter verwendet, oder das Chip musste über einen JTAG Adapter angesprochen werden. Im Laufe der Zeit haben sich Bootloader etabliert, die in einem reservierten Bereich des Flashs sitzen und vor Ausführen des Hauptprogramms ein Programmieren über die serielle Schnittstelle zulassen. So auch bei diesem Modul. es ich möglich die Firmware von NodeMcu über die Serielle Schnittstelle zu flashen. Das Projekt stellt dazu sogar ein Windows Programm zur Verfügung, das völlig selbständig das Modul mit allen benötigten Speicherteilen beschriebt. 

Kommunikation mit dem Modul

ESPlorer

Nachdem die NodeMcu Firmware auf das Modul geflasht wurde, kann über die Serielle Schnittstelle die Kommunikation mit dem LUA-Interpreter aufgenommen werden. Der Interpreter lauscht mit einer Baudrate von 9600 8 Bits, 1 Stop, kein Parity. Rund um den ESP8266 hat sich bereits eine große Gemeinschaft von Leuten gebildet, die alle mit zum Entstehen von großartiger Software beitragen. Zum Beispiel das ESPlorer Projekt, das eine leicht zu bedienende Oberfläche zum Programmieren der LUA Skripte entwickelt hat. Die für die Entwicklung nötigen Informationen finden sich ebenfalls auf GitHub und können dort im Wiki und der API Dokumentation nachgeschlagen werden.

Bei den bereits verfügbaren LUA Modulen befindet sich alles was man zur Entwicklung von WLAN fähigen Geräten benötigt. Jetzt bleibt nur noch die Frage zu klären, wo kann man überall noch WLAN einbauen und wie mache ich das, damit mein Nachbar mir nicht das Licht ausschalten kann.

BTW: What’s inside a cheap Chinese LED power supply?

I got a cheap 400W 12V switching power supply in the mail the other day. I wanted to use it as replacement for an ATX power supply for my 3D-printer.

But what is inside those things?
400W / 12V Power supply from china

First of all let’s have a look at the outside of the power brick. The Frame is made from two 1.5mm aluminium sheets. There is a fan in the top and the screw terminals are covered with a plastic lid. The frame has two screw holes on each side for mounting. It does not have a switch but there is an indicator LED next to the terminal.

The fan on the top cover is connected to a pin header so it can be removed with the lid. The housing itself is pretty sturdy so it looks good so far.

The input voltage can be selected via a switch that is accessible from the outside. You can select a supply voltage of 110V and 220V. So it can be used worldwide since the frequency of the input current does not matter for a switching power supply.

After lifting the cover up we can have a look at the PCB inside. It looks like there is a single sided through hole board inside. Four high power semi-conductors are placed near the side walls and thermally connected to them.One thing I noticed was a loose screw flying around inside the supply. This can be extremely dangerous since it can cause a short in the supply. Also there where two mounting screws missing on the board. One in the middle and one in the upper left corner. 

The underside of the PCB shows the different components of the circuit. The picture below shows the different parts of the power supply. First of all we can see the terminal at the right side and the high voltage AC input at the lower part of the screw terminals. The yellow area is protective earth and surrounds the hot part of the high voltage mains circuit. This is where one of the mounting screws where missing! The mains voltage is decoupled via a transformer and goes from the yellow part into the green area. There it is rectified and buffered in two 680µF caps. Those are rated 250V so I’m not sure what voltage this area has. It certainly can not be rectified mains voltage since this is nearly 400V! The pink area is control circuitry with a central controller KA7500B. It brings everything along to control the switching regulator found at the back side heat-sink. The blue square is the main transformer, that transforms the higher voltage on this side to the desired 12V on the other side. There you can see that the traces on the PCB get flooded with solder to decrease their resistivity. The PCB trace width calculator gives a rough estimation for about 97.9mm trace width. This is certainly not the case so the added solder leads to a reduced trace width. The output of the Terminals is monitored by the chip. So they have to be connected to the 12V output traces. Since the high current leads to a voltage drop over the distance from the transformer to the terminals the measurement of the output voltage should be done at the terminal point. Therefore there should be at least one sens line going back to the controller circuit. Yes, there it is. Marked with the orange arrow.
Oh wow they are high quality Rubycon Caps… Oh wait. no they aren’t
So after all I can say you get what you pay for. The power supply is not bad. But it certainly is no high end laboratory style power brick. Let’s see how it works out under load.

The output voltage at the terminal droped one volt after loading the power supply with 350W. This can be compensated at the trimmer next to the terminal. so now the output voltage is bang on 12V and the ripple is in an acceptable 0.2Vpp. The supply can now deliver 12V without dropping to 10V like the ATX did. Let’s fix up the printer to get going again.

Funkstrom? Aw Yis!

Qi Empfänger
Qi (Aussprache: [ˈt͡ʃiː]) ist chinesisch und steht für Lebensenergie. Es ist aber auch ein Standard des Wireless Power Konsortiums um drahtlose Energieübertragung durch elektromagnetische Induktion für kurze Strecken zu vereinheitlichen und kompatibel zu halten. Es gibt mittlerweile eine Vielzahl von billigen chinesischen Sende- und Empfangsgeräte, die diese Art der Energieübertragung zum Laden eines Mobiltelefons verfügbar machen, ohne dass dafür die Garantie des Handys erlischt. Diese Module gibt es in verschiedenen Ausführungen und für viele verschiedene Positionen. Wie in den Bildern zu erkennen, sind sie so aufgebaut, dass das Flachbandkabel entsprechend der Konfektion des Moduls angelötet wird. Das Basismodul mit der Sendespule verfügt über einen Micro-USB Buchse und kann somit mit den gewohnten Ladegeräten verwendet werden.


Wie beim Empfänger zu sehen ist, besteht das Modul eigentlich nur aus einem Chip, dessen Beschriftung nicht lesbar ist und einigen passiven Bauteilen. Den größten Teil nimmt die Antennenspule in Anspruch. Sie ist zwischen den beiden Klebeflächen eingeklebt und somit auch ziemlich flach. Das Löten der Steckerverbindung ist jedoch nicht ganz einfach, da die Masseverbindung direkt auf die Kupferfläche der Platine geht und so eine große Wärmemenge aufgenommen werden kann. Nach ein paar Versuchen habe ich allerdings die Lötverbindung so hinbekommen, dass der Anschluss zur Seite des Moduls richtig herum und vor allem in der richtigen Länge herausschaut. Alles wieder zusammengeklebt, auf die Rückseite meines HTC One S geklebt und auf die Basisstation damit. Siehe da, es funktioniert nicht, das Ladelicht blinkt und das Telefon lädt nicht.

Die Basisstation des Ladegerätes ist in einem rechteckigen Kunststoff Gehäuse untergebracht. Das Gehäuse an sich ist sehr leicht und es macht nicht den stabilsten Eindruck. Die Angaben in der Bedienungsanleitung sind auf Chinglish und nicht sehr hilfreich. Nur das Netzteil, das dort erwähnt wird, war nicht in der Packung. Mist. Auf der Rückseite des Tischgeräts sind neben ‚Made in China‘ die üblichen Angaben gemacht, die darauf hinweisen, wo das Problem liegen könnte. Ich habe das Ladegerät an meinem Laptop betrieben. Da kommen aus dem USB Anschluss nur 500mA Strom und somit nicht genug für dieses energiehungrige Teil. Laut USB Spezifikation ist der Maximalstrom der über einen Port kommt 500mA aber das Gerät möchte 2A Eingangsstrom sehen. Also schnell einen der nicht standardkonformen chinesischen USB-Steckdosengeräte dran und siehe da, mit genug Power geht es. Das blaue Ladelicht ist dauerhaft an und das Telefon zeigt an, dass es geladen wird.

Der Inhalt der so leichten Ladestation hat mich dann doch gewundert. Ich habe damit gerechnet, dass eine schlecht gewickelte Spule mehr schlecht als recht an eine Platine gelötet ist auf der ein Schwingkreis das Ladesignal erzeugt. Dem ist nicht ganz so.

Innenleben der Ladestation

Neben einer durchaus ansehnlichen Spule (dieser Aufbau wird auch bei uns in der Firma verwendet) die auf einer Ferrit-Platte sitzt und stabil ins Gehäuse geklebt ist befindet sich ein Board mit mehreren ICs. Der Gehäusedeckel hat an der Stelle an der die Spule sitzt sogar eine Verjüngung, sodass die elektromagnetischen Wellen nicht unnötig durch das Gehäuse gedämpft werden. Die Zentrale Steuerung des Ladegeräts dürfte wohl der Microcontroller U3 im 20 Pin Gehäuse sein.

IC U3: Der Controller?

Die Beschriftung sagt, es handelt sich um einen MSP430G2558. Allerdings hat Texas Instruments keinen MSP mit dieser Bezeichnung im Programm, der Controller, der dieser Modellnummer am nächsten kommt ist der MSP430G2553. Auch das Datenblatt des 2553 zeigt an, dass Das hier verwendete Package nicht zweizeilig, sondern einzeilig beschrieben ist. Also weiter bei Ti.com nach Informationen zu dieser Controllerfamilie gesucht und auch einiges gefunden. Der Teil ‚G2‘ steht für einen Controller aus der Value Line Familie. Aber auch hier findet sich kein Exemplar, dass mit einer 8 im Namen endet. Ich gehe davon aus, dass es sich hier um eine Kopie eines MSP430 handelt, selbst wenn dazu ein Datenblatt existiert, besteht keine Garantie, dass die dort genannten Werte eingehalten werden können.

MOSFET
Betrachten wir ein weiteren Chip auf der Baugruppe. Die Spule wird von zwei ziemlich starken MOSFETs getrieben. Die DTM4606 sind in der Lage über 5A zu steuern. Jeder Chip beinhaltet zwei dieser FETs, jeweils ein P- und ein N-Kanal. Allerdings ist der P-Kanal bei beiden nicht verbunden. Weiterhin sind pro Spulenseite 4 NPN Transistoren verbaut, von denen aus der Controller die MOSFETs steuert.

Operationsverstärker

Eine weitere sehr interessante Baugruppe ist auf der Platine zu finden. Ein vier in einem Gehäuse Operationsverstärker, was die auffallend vielen Kondensatoren und Widerständen erklärt. Es sieht so aus, als würde die Spule neben der reinen Aussendung der Energie auch noch eine Überwachung des Ladezustands durchführen. Das erklärt, weshalb das Ladegerät in der Lage ist zu erkennen, ob ein Gerät in Reichweite der Sendespule ist, aber nicht genügend Energie übertragen wird um im Empfänger einen Ladestrom zu erzeugen, wie es mit dem Betrieb am USB-Port offensichtlich der Fall war.