Wie im Artikel über die kapazitive Kopplung beschrieben betrachten wir Microstrip Leiter. Betrachten wir zuerst die kurze Koppelstrecke. Dabei induziert das Magnetfeld der Leitung 1 in Leitung 2 eine Spannung, die in Richtung der Quelle eine positive und in Richtung der Senke eine negative Auslenkung hat.
Gehen wir jetzt davon aus, dass die Strecke länger ist, summiert sich der Fehler in Richtung Senke. In Richtung Quelle verlängert sich der Impuls.
Betrachten wir jetzt das Ende der Koppelstrecke, bewegt sich der Impuls in Richtung Quelle und Senke weiter.
Wie bereits gezeigt, koppelt kapazitiv ins positive und induktiv ins negative. Und bei der Stripline sind die Störgrößen auch identisch. Heißt, wenn wir alles betrachten, erhalten wir folgendes Bild der Störung:
Die Störung in Richtung Senke ist verschwunden und die Störung in Richtung Quelle ist so lange wie die Koppelstrecke, und addiert sich. Zu Beginn haben wir gesehen, dass Microstrip und Stripline sich in der Symmetrie des Dielektrikums unterscheiden und daher die induktive Kopplung nicht von der kapazitiven Kopplung ausgelöscht werden kann.
Und so beeinflussen wir die Signale an nahe aneinander verlaufenden Kupferbahnen auf Leiterplatten.
Beim Übersprechen koppeln Signale in angrenzende Leitungen ein und können dort Probleme verursachen. Um Übersprechen zu verstehen betrachten wir die Signale auf der Leiterplatte und deren kapazitive Kopplung. Im nächsten Artikel betrachten wir die induktive Kopplung. Die Kombination aus beidem ist, was wir uns zum Schluss anschauen.
Betrachtet wird eine Stripline Konfiguration bei der die Leitungen in der der Leiterplatte liegen und eine GND als Referenzfläche darüber und darunter verläuft. Somit sind die induktiven Störeinflüsse und die kapazitiven Störeinflüsse gleich groß.
Bei der Microstrip Konfiguration liegen die Leiter auf der Außenseite der Platine, das ist die wahrscheinlichste Konfiguration bei 2 oder 4-Lagen Leiterplatten. Da hier das Dielektrikum ungleich ist, also FR4 (ɛr ≈ 4) und Luft (ɛr ≈ 1) ist die kapazitive Beeinflussung geringer.
Kapazitive Kopplung
Bei der kapazitiven Kopplung werden in den beeinflussten Leiter Fehlerströme eingebracht. Leiter 1 und 2 haben eine kurze Beeinflussungsstrecke, hier mit einem C gekennzeichnet. Die beiden Leitungen haben Referenz auf GND und sind damit Kapazitiv miteinander verbunden. Leiter 1 ist der Aggressor und hat eine Signalflanke die sich von der Quelle (links) zur Senke (rechts) bewegt.
Das Signal (oben in blau) wechselt in Leiter 1 und verursacht einen Verschiebestrom durch die Kapazitäten. Dieser Strom fließt auch in Leiter 2. Die Beeinflussung findet nur statt, wenn ein Verschiebestrom fließt, also wenn eine Signalflanke vorbei kommt.
Bei statischem Signal kommt es zu keiner Beeinflussung und die gekoppelte Störung wandert sowohl zur Quelle als auch zum Ziel. Sie bewegt sich in beide Richtungen!
Betrachten wir jetzt die Situation, wenn eine lange Koppelstrecke vorhanden ist. Hier dargestellt mit drei Kapazitäten:
Initial entspricht das Störsignal (obere grüne Kurve) dem der kurzen Koppelstrecke. Wenn jetzt die Signalflanke auf Leiter 1 weiter wandert, kombinieren sich die Störungen zu dem in der folgenden Abbildung gezeigten Störsignal
Der zur Senke wandernde Störimpuls wird mit dem neuen kombiniert und erhöht den Strom an dieser Stelle. Der zur Quelle wandernde Impuls wird länger, seine Amplitude steigt nicht. Er hat sich von der Beeinflussung bereits entfernt.
Je länger die Koppelstrecke ist, desto länger wird der zur Quelle laufende Störimpuls und desto größer wird der zur Senke wandernde Impuls. Die nachfolgende Abbildung zeigt die wandernden Signale nachdem die Flanke in Leiter 1 die Koppelstrecke verlassen hat.
Die Störsignale wandern nun entlang der Signalleitung 2 zur Quelle (nach links) und zur Senke (nach rechts)
Im nächsten Artikel betrachten wir die induktive Kopplung und wo die Induktivität der Leitung Fehlerströme induziert.
Wir haben in unserem neuen Produkt eine Ethernet Verbindung in die Außenwelt. Dort wird über eine RJ45 Buchse 100Mbit Ethernet von der Außenwelt ins Innere weitergegeben.
Ethernet im Normalfall
Normalerweise ist Ethernet eine Point-2-Point Verbindung zweier Geräte über ein Kabel. Das Kabel überträgt die Daten dabei galvanisch getrennt zu den Gerätespannungen. Daher könnne die Geräte in unterschiedlichen Stromnetzen betrieben werden und müssen kein gemeinsames Potential besitzen. Eine „normale“ Ethernet Schnittstelle ist unten abgebildet
Anforderungen
Die Signale des Netzwerks müssen in unserem Gerät zu den elektrisch leitfähigen Komponenten mit 1500V Spannungsfestigkeit isoliert werden. Die Netzwerkschnittstelle im Inneren des Geräts besitzt noch sechs Meter bewegte Leitung bis zur RJ45 Buchse an der Schnittstelle zur Außenwelt. Daher muss hier eine Lösung gefunden werden, die diese Isolierstärke entweder über die sechs Meter gewährlisten kann, oder die Isolierung muss bereits an der Stelle des RJ45 Steckers erfolgen.
Als zweite Herausforderung kommt hinzu, dass das Netzwerksignal zusätzlich zu anderen Signalen gemeinsam auf einer Leitung übertragen werden muss. Es liegt eine Leitung von der Anschlussstelle zur Netzwerkschnittstelle. Dazwischen befinden sich mehrere Trennstellen, an denen Komponenten des Geräts bei der Installation vor Ort zusammen gesteckt werden.
Das Kabel ist ein bewegtes Kabel und hat somit neben der elektrischen Anforderung auch noch eine mechanische Belastungen. Das von uns gewählte Kabel hat 12 Adern, von denen jeweils 2 als verdrillte Pärchen geführt sind und alle zusammen von einem Schirm umschlossen werden. Wir nutzen 4 der Leiter für 100Mbit Ethernet.
Die Herausforderung in der elektromagnetischen Verträglichkeit ist hier nicht die Funktion unter Störeinflüssen. Die werden dank der differenziellen Signalstruktur des Ethernets wenig gestört. Das Problem sind die abgestrahlten elektromagnetischen Wellen.
Wie oben bereits beschrieben sind die Ethernet-Signale galvanisch getrennt vom System und liegen somit schwebend in der Leitung. Umgeben sind sie dort von Signalen, die einen Bezug zu GND haben. Diese Sigtnale haben also eine elektrische Verbindung in das System hinein. Hier ist ein Aufnahme des abgestrahlten Spektrums mit aktivem Netzwerk Link.
Klar zu sehen ist, dass bei allen drei Messverfahren (Peak, Average, Q-Peak) die Granzwerte bei verschiedenen Frequenzen überschritten werden. Die kritischen Überschreitungen sind allerdings im unten Frequenzbereich. Hier können einige Maßnahmen durchgeführt werden um die Abstrahlung von EM-Wellen zu verringern.
Die schnelle, aber hier leider unwirksame Abhilfe würde ein Klapp-Ferrit schaffen. Dieser würde die Gleichtakt-Fehlerströme begrenzen, also Ströme, die entlang der Leitung in eine Richtung fließen. In unserem Fall hatte aber der Ferrit keinen Einfluss auf die abgestrahlte Störung. Es handelt sich wohl nicht um eine Gleichtakt-Störung. Ein weiterer Platz für Feritte ist innerhalb der Leitung um eine Gegentakt-Störung zu beseitigen. Hier wird eine Induktivität in jede Leitung eingebracht. Im unten gezeigten Schaltbild sind das die Bauelemente L906 – L909. Diese verschleifen die Schaltflanke der Signale und reduzieren dadurch die auftretenden Oberwellen des Signals.
Wie oben zu sehen ist, sind die Mittenabgriffe der beiden differenziellen Übertragungsleitungen NET_RD und NET_TD mit je einem Abschlusswiderstand (R903 und R904) verbunden und werden kapazitiv an den Leitungsschirm angebunden. Eine Verbindung von GND_ISO und GND ist vorgesehen, aber nicht bestückt.
Die Gegenstelle sieht wie folgt aus und besitzt ebenfalls einen Ethernet-Übertrager Baustein. Die Signale LAN_RX und NET_RX sowie LAN_TX und NET_TX sind über die sechs Metzer lange Leitung miteinander verbunden. Diese Leitung hat auf dem Weg drei Steckstellen an denen das Signal über eine Leiterplatte geführt wird.
Die TX+/- und RX+/- Signale gehen dann auf ein Ethernet PHY. Diese Art von Schaltung haben wir in unserer Anlage versucht nachzustellen. Es wurden die Abschlusswiderstände, die im RJ45-Stecker gezeigt sind auf der Baugruppe platziert und wie in dem Beispiel verschaltet. Dabei gehen die Mittelabgriffe der Transformatoren gegen den Abschlusswiderstand und gemeinsam über einen Kondensator gegen Schirm Potential. Die ungenutzten Verbindungen werden kurzsgeschlossen und ebenfalls über 75Ohm an das Schirm Potential gebracht.
Auf der Innenseite zeigt sich ein Ähnliches Bild, hier sind wir etwas anders vorgegenagen und haben die Abschlusswiderstände kurzgeschlossen, wie sie im ‚eingangsseitigen‘ Teil der Refernzschaltung zu sehen ist. Dieses Vorgehen hat allerdings zu den oben gezeigten Abstrahlverhalten geführt.
Lösung
Eine bessere Signalqualität und Elektromangetische Abstrahlung haben wir erreicht, indem die innen liegende Seite der Netzwerkschnittstellen hinter dem ersten Übertrager (nach der RJ45 Buchse) am Mittenabgriff komplett offen gelassen wurde. Das heißt die Widerstände R243 und R244 sind nicht bestückt, es gibt keine Verbindung zum Schirm der Leitung. Auf der anderen Seite des inneren Kabels ist die Schlatung ebenfalls ohne Abschlusswiderstand und nicht mit Schirm verbunden.
Diese Verschaltung ergab dann folgenden Messchrieb, ebenfalls mit aktivem Netzwerk:
Die blauen Rauten sind die endgültigen Q-Peak Messwerte, nach denen die Norm verlangt. Wir liegen also untehalb der in der Norm gewünschten Grenze von 30dBµV/m und das System ist bereit für die Zulassung. Eine Messung mit einem dedizierten LAN Kabel ergibt zwar ein komplett anderes Bild mit wesentlich weniger Abstrahlung. Aber wir haben leider kein Platz um ein eigenes Kabel zu legen. Für den aufmerksamen Leser ist hier noch anzumerken, dass die Nadel bei 93MHz nicht zum LAN gehört und auch bei gezogener Leitung bestehen bleibt. Das ist Baustelle Nummer zwei.
Vielen Dank für die über 1000 Downloads. Wir haben jetzt ein neues Software Setup (www.ultraschall.fm)
Was würde Rolf sagen?
Alexa und Sprachsteuerung war ein Thema mit dem Basti sich beruflich beschäftigt hat. Abends hat er dann einen Alexa Skill zusammen gebaut, der verdrehte Redewendungen zum Besten gibt. Sagt einfach „Alexa, Starte Rolfs Weisheiten“ und Alexa erzählt euch einen lustige Redewendung
Chris war EMV messen
Er erzählt ein wenig von den Tätigkeiten, die er dort durchgeführt hat. Er hat einen Tag Emission und den zweiten Tag Immission gemessen. Die Messung fand in einer 10 Meter Halle statt. In der Halle steht die Antenne 10 Meter vom Prüfling entfernt und misst die Elektromagnetischen Wellen in 1 und 4 Metern Höhe, die vom Prüfling ausgesendet werden. Chris hat nach der Sicherheitsnorm für Medizingeräte gemessen (EN60601). Die Einstrahlung wird ebenfalls mit einer Antenne vorgenommen, jedoch werden Elektromagnetische Wellen auf den Prüfling gesendet. Hier hat Chris mit einer Feldstärke von größer als 3V/m gemessen.
Minidrucker Hotend
Chris hat am Minidrucker weiterentwickelt und das Hotend zusammen gebaut. Er hat eine handelsübliche Düse an der Leiterplatte festgelötet. Auf der Leiterplatte sind die Heizwiderstände mit Lötzinn direkt mit der Düse verbunden. Das Hotend ist im Bild dieser Folge zu sehen. Die Schrittmotoren sind leider noch nicht funktionsfähig, wahrscheinlich sind die Treiber nicht richtig verlötet. Der Extruder soll mit einem kleinen Schrittmotor mit einer Untersetzung von 1:75 realisiert werden.
Chip der Woche TPS61099
Basti hat diesen DC/DC bereits in einigen Designs eingesetzt. Der Booster kann bis runter zu 0,7V arbeiten und dadurch die Batterie bis zum Schluss verwenden. Das schont die Umwelt. Und super klein ist er auch.
Cookie-Zustimmung verwalten
Um dir ein optimales Erlebnis zu bieten, verwenden wir Technologien wie Cookies, um Geräteinformationen zu speichern und/oder darauf zuzugreifen. Wenn du diesen Technologien zustimmst, können wir Daten wie das Surfverhalten oder eindeutige IDs auf dieser Website verarbeiten. Wenn du deine Zustimmung nicht erteilst oder zurückziehst, können bestimmte Merkmale und Funktionen beeinträchtigt werden.
Funktional
Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt.Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.