Jetzt wird’s bunt

Am Prime Day diesen Jahres habe ich mir eine neue Beleuchtung für den Schreibtisch und die Terrasse gegönnt.

Für den Schreibtisch wollte ich eine indirekte Beleuchtung der Tastatur und Umgebung, das habe ich mit Hilfe der Phillips Hue Ambient* Lichter erreicht. Diese stehen hinter den Monitoren und strahlen an die Wand. Dadurch entsteht ein dimmbares und in der Farbe anpassbares Licht, dass sich mit Hilfe der Hue App, oder von Home Assistant einstellen lässt.

Für die Terrasse habe ich einen wasserdichten RGB LED Streifen* gekauft, dieser wird über WLAN angebunden und kann auch von Home Assistant gesteuert werden. Ähnlich der Schreibtischbeleuchtung ist der Leuchtstreifen in der Farbe anpassbar. Somit kann im Garten eine stimmungsvolle Beleuchtung erreicht werden, ohne zu viele verschiedene Apps zu verwenden.

Home Assistant Konfiguration

Die Konfiguration für Home Assistant zur Unterstützung von Hue ist denkbar einfach. Im Integrationsmenü muss lediglich die Adresse der Hue Bridge im lokalen Netzwerk ausgewählt werden und schon stehen alle Geräte, die normalerweise über die Hue App gesteuert werden müssen auch in Home Assistant zur Verfügung.

Ähnlich ist es mit der Aktivierung des RGB LED Streifens. Die kleine Box, die die Ansteuerung übernimmt, und die von vielen asiatischen Anbietern in unterschiedlicher Ausführung verkauft wird, ist als Flux LED unterstützt. Um die Komponente zu aktivieren, muss in der configuration.yaml diese Zeilen in der light Kategorie hinzugefügt werden:

# Example configuration.yaml entry
light:
  - platform: flux_led
    automatic_add: true

Anschließend Home Assistant neu starten und die Lampen sind als Elemente für die Oberfläche verfügbar.

* alle Produkte sind Amazon Affiliate Links

Home Assistant auf Samsung ARTIK 520: Zigbee

Weiter geht es mit dem ARTIK Board. Wir haben das letzte Mal das System aufgesetzt, aktualisiert und Home Assistant installiert. Jetzt starten wir Home Assistant bei jedem Boot, updaten die Firmware des Zigbee Controllers um mit Home Assisatant zusammen zu arbeiten und konfigurieren Zigbee für eine Philips hue Glühlampe.

Um nach dem Power-up Home Assistant direkt zu starten, müssen wir dem Initialisierungs-Dämon mitteilen, dass hass ausgeführt werden soll. Das machen wir ähnlich dem wifi mit Hilfe von einem Initialisierungsscript. Dazu erzeugen wir einen Service mit Namen home-assistant

vi /etc/systemd/system/home-assistant@homeassistant.service

[Unit]
Description=Home Assistant
After=network-online.target

[Service]
Type=simple
User=%i
ExecStart=/srv/homeassistant/bin/hass -c „/home/homeassistant/.homeassistant“

[Install]

WantedBy=multi-user.target



Wie der vi Editor verwendet wird, wurde im letzten Artikel kurz erklärt, weitere Informationen findet ihr hier.

Der eben erzeugte Service muss noch initialisiert werden, dazu müssen wir den Dienst neu starten

systemctl –system daemon-reload

Danach können wir den Dienst in den Autostart laden

systemctl enable home-assistant@homeassistant

Jetzt können wir einen reboot durchführen und Home Assistant wird beim Neustart automatisch gestartet.

Das ARTIK 520 Modul hat einen NCP (Network Co-Processor) für Zigbee. Dabei handelt es sich um den EM3587 von Silabs. Dieser hat in der aktuellen Konfiguration eine Firmware geladen, die mit RTS und CTS eine Hardware Flusskontrolle erfordert. Home Assistant hat dafür keine Unterstützung, daher müssen wir die Firmware des NCP (NCP Firmware 2017-04-25) ändern. Für das ARTIK 520 Modul gibt es leider nur die RTS/CTS Firmware, also nehmen wir das Image des ARTIK 710 Moduls. Das ist kompatibel und kommt mit Software Flusskontrolle. Es ist dadurch kompatibel mit Home Assistant. Also entpacken wir ARTIK710NCP.zip aus dem Set der Firmwaren.

Die Dateien müssen wir jetzt auf das Modul übertragen werden. Dazu verwenden wir die SD Karte aus dem ersten Teil. Auf diese kopieren wir die Dateien

flash_firmware
ncp-uart-xon-xoff-use-with-serial-uart-btl-5.7.4.ebl

Die SD-Karte legen wir wieder in den Slot auf dem ARTIK 520 Board und hängen die SD-Karte in das System ein, kopieren die zwei Dateien und machen das Flash-Programm ausführbar.

mkdir /mnt/SD
mount /dev/mmcblk1p1 /mnt/SD
cp /mnt/SD/flash_firmware /root/
cp /mnt/SD/ncp* /root/
chmod +x /root/flash_firmware
umount /mnt/SD

Jetzt müssen wir die Schnittstelle zum NCP frei bekommen. Dazu beenden wir den Zigbee Dienst und deaktivieren ihn. Ebenso stoppen wir Home Assistant.

systemctl stop zigbee-daemon
systemctl disable zigbee-daemon
systemctl stop home-assistant

Das Firmware-Update Tool wird als nächstes ausgeführt und updatet den Co-Prozessor

cd /root
./flash_firmware -p /dev/ttySAC1 -f \
  ncp-uart-xon-xoff-use-with-serial-uart-btl-5.7.4.ebl



Do you want to start firmware flashing application? Say Y(es) or N(o): Y



============================================
image transfer is completed (version : 0.1)
============================================

Das Firmwareimage ist erfolgreich übertragen worden und der NCP kann jetzt von Home Assistant verwendet werden.

Dazu schalten wir die Komponente zha ein. Diese verwaltet verschiedene Zigbee Komponenten wie Schalter, Lichter und Sensoren.

Dazu editieren wir die Datei configuration.yaml

vi /home/homeassistant/.homeassistant/configuration.yaml

Dort fügen wir ans Ende die folgenden drei Zeilen ein:

zha:
  usb_path: /dev/ttySAC1
  database_path: /home/homeassistant/.homeassistant/zigbee.db

Abspeichern, Home Assistant starten und laden lassen. Dieser Schritt dauert wieder einige Zeit.

systemctl start home-assisatant@homeassistant

Nach einer Weile ist die Webseite wieder erreichbar und wir können die Dienste Tools anwählen.

Dort können wir den zha Dienst mit der Funktion permit auswählen und so Home Assistant anweise auf neue Verbindungen aus dem Zigbee Netzwerk zu lauschen. Nach einem Druck auf CALL SERVICE werden für 60 Sekunden neuen Zigbee Geräte im Netzwerk akzeptiert.

Jetzt ist es an der Zeit unsere Zigbee Geräte einzuschalten, oder in diesem Fall einzudrehen.

Nach einigen Sekunden ist diese dann auch von alleine im Home Assistant Dashboard erschienen. Das Ein- und Ausschalten hat auch bereits automagisch funktioniert.

Somit haben wir Zigbee erfolgreich in Betrieb genommen und können weitere Geräte dem Netzwerk hinzufügen.

Home Assistant auf Samsung ARTIK 520 installieren

Ich habe zuhause bei mir viele Funktionen mit Hilfe von Home Assistant automatisiert. Darunter fällt: Licht, Heizung, Fenster Überwachung und Thermometer. Das System läuft bei mir in einem Docker System unter Ubuntu Server auf einem Intel NUC PC. Mit SSD und 4GB Ram ist das eine performante und einfach zu wartende Sache. Letze Woche war die Embedded World in Nürnberg, eine der größten Elektronik und Embedded System Messen der Welt. Von dort habe ich ein ARTIK 520 Evaluations-Board mitgebracht. Samsung hat mit dem ARTIK System eine Komplettlösung für alle IOT Belange geschaffen. Neben kleinen Modulen im Endgerät über Sicherheit bis in die Cloud ist alles dabei um ein IOT-Gerät zu entwickeln.

Das ARTIK 520 Evaluations-Board hat ein Modul, jede Menge Antennen (4 Stück) für WiFi, Bluetooth, ZigBee, Z-Wave, Thread, Arduino Headers, Micro SD-Karten Slot und ein UART USB Interface. 
Dazu gibt es dann eine vollintegrierte Software Toolchain, die auf Eclipse basiert und weitere Tools zur Software-Entwicklung.
Auf dem ARTIK 520 Modul arbeitet ein 1GHz dual Core Cortex-A7 mit GPU, 512MB DDR3 RAM und 4GB eMMC Speicher. Zusätzlich zu dem Rechenkern gibt es noch je einen WiFi und Zigbee Co-Prozessor.

Das System ist leistungsfähig genug um eine Home Assistant Instanz laufen zu lassen. Dazu sind einige Schritte notwendig.
Mit einer SD-Karte ist es sehr einfach das System upzudaten. Das Image, dass auf das Modul geladen werden soll kann hier heruntergeladen werden: Downloads 

Wir benötigen ARTIK 520 Firmware Image A520-OS-2.0.0 (Fedora)

Um das Image auf eine SD-Karte schrieben zu können, benötigen wir eine Software wie zum Beispiel Etcher. Wenn die SD-Karte fertig beschrieben ist, steckt man sie einfach in den passenden Slot und schaltet auf SD-Boot Option. Dazu müssen beide Schalter von SW2 auf  „ON“ geschoben werden.

Der Debug USB Anschluss bietet uns eine serielle Konsole an, über die wir die Ausgaben des Moduls verfolgen können. Dazu einfach ein USB Kabel einstecken und mit zum Beispiel PuTTY eine Verbindung aufbauen.

Jetzt schalten wir das Board an und drücken den POWER Knopf für eine Sekunde. Auf der seriellen Konsole bekommen wir den Bootlaoder zu sehen, dort steht relativ weit am Anfang:

Checking Boot Mode … SDMMC

Das zeigt uns, dass die SD-Karte als Boot-Gerät eingestellt und erkannt wurde. Wenn das Update beendet ist, erscheint die Anzeige:

Please turn off the board and convert to eMMC boot mode

Jetzt also ausschalten, SD-Karte raus, die Schalter von SW2 zurück in die Ausgangsstellung und wieder einschalten und den POWER Knopf für eine Sekunde drücken. In der seriellen Konsole wird der normale Bootvorgang angezeigt, der mit einer Loginaufforderung endet. Wir melden uns als root mit dem Passwort root an.


Als nächstes benötigt das System Internetzugang um sich selbst weiter zu aktualisieren. Zum Glück bringt es direkt Wi-Fi mit, so können wir das Netzwerkkabel sparen. Die Einrichtung von Wi-Fi ist ein wenig kompliziert, da viele Informationen dem System zur Verfügung gestellt werden müssen. Außerdem wollen wir auch, dass das System nach einem Neustart noch weiß, wohin es sich verbinden soll. Die Login Informationen für das Wi-Fi Netzwerk werden in die Datei wpa_supplicant.conf eingetragen:

cd /etc/wpa_supplicant/
wpa_passphrase „SSID“ „PASSWORT“ >> wpa_supplicant.conf

Die beiden Befehle wechseln das aktuelle Verzeichnis in das wpa_supplicant Konfigurationsverzeichnis und ergänzen dann die Daten in wpa_supplicant.conf mit den Zugangsdaten (PASSWORT) für das WLAN mit dem Namen SSID.
Wichtig ist zusätzlich noch die Informationen zur Gruppe und zum Control Interface. Das checken wir mit

cat /etc/wpa_supplicant/wpa_supplicant.conf

Die Ausgabe sollte ergeben

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=wheel

update_config=1

network={
        ssid=“SSID“
        #psk=“PASSWORD“
        psk=1e5ed3c450c25eb08xxxxxxxxxxxxxxxxxxxx878bcd17f3b5f797a2ab4fd1292
}

Das sind die vollständigen Konfigurationsdaten für den Wi-Fi Zugang. Mit einem Neustart durch reboot werden die Daten auf den eMMC geschrieben und permanent gespeichert.

Um nach jedem Neustart Wi-Fi zu aktivieren muss der wpa_supplicant Dienst gestartet werden. Das geht mit

systemctl start wpa_supplicant
systemctl status wpa_supplicant

Der zweite Befehl zeigt uns, ob der Dienst gestartet wurde oder nicht. Wenn der Dienst läuft, benötigen wir noch eine IP Adresse für das Wi-Fi-Interface diese bekommen wir über DHCP mit

dhclient wlan0

Nach einiger Zeit hat das WLAN-Interface eine IP bekommen. Um das zu checken fragen wir den Netzwerkdienst

ip a

Ganz unten wird uns das wlan0 Interface angezeigt

6: wlan0: mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 30:07:4d:84:d0:b3 brd ff:ff:ff:ff:ff:ff
    inet 192.168.0.101/24 brd 192.168.0.255 scope global dynamic wlan0
       valid_lft 43151sec preferred_lft 43151sec
    inet6 fd0f:5a7d:267f:0:3207:4dff:fe84:d0b3/64 scope global dynamic
       valid_lft forever preferred_lft forever
    inet6 fe80::3207:4dff:fe84:d0b3/64 scope link
       valid_lft forever preferred_lft forever

Hier wurde uns die IP 192.168.0.101 zugewiesen. Das ist alles schön und gut, aber wir wollen, dass sich das System nahc dem Booten automatisch beim WLAN anmeldet und eine IP bezieht. Dazu müssen wir ein Startscript anlegen. Das funktioniert mit Hilfe des Init Dämons, der die Initialisierung des Systems übernimmt. Wir legen dazu eine Datei im Verzeichnis /etc/init.d an.

vi /etc/init.d/wlan

Der Befehl startet den Editor vi und legt die Datei wlan im /etc/init.d Ordner an. Im vi Editor geben wir diese Befehle ein: mit der Taste i schalten wir in den ‚Einfügen Modus‘ und können den unten stehenden Text hinzufügen (hier Strg+c und in PuTTY mit Rechtsklick einfügen)

#! /bin/bash
#chkconfig: – 99 10
start()
{
/usr/sbin/dhclient wlan0
}
stop()
{
kill dhclient
}
restart()
{
stop
start
}
case „$1“ in
start)
start
;;
stop)
stop
;;
restart)
restart
;;
*)
echo „Usage:$0 {start|stop|restart}“
esac
exit 0 

Der Druck auf Esc und 😡 mit anschließendem Druck auf Enter speichert die Datei und schließt den Editor.
Jetzt fehlt nur noch dass das System das Skript als Programm erkennt und der Moment im Bootvorgang in dem der Init-Dämon das Programm laden soll.

chmod a+x /etc/init.d/wlan
chkconfig –add wlan
chkconfig –level 12345 wlan on

Der erste Befehlt schaltet das Skript auf ausführbar, der Zweite fügt es zur Initialisierung hinzu und der letzte Befehl aktiviert es für alle Run-Levels. Ein weiterer reboot konserviert die Änderung und startet das WLAN beim Booten.

Jetzt können die aktuellsten Updates eingespielt werden. Das erfolgt durch das Programm DNF

dnf upgrade

Das kann eine Weile dauern, je nachdem wie viele Updates seit Fertigstellung des SD-Karten Images veröffentlicht wurden.

Wenn das alles geschafft ist, können wir mit der Installation von Home Assistant beginnen. Dabei sind einige Dinge zu beachten, denn Home Assistant benötigt Python Version 3.5 und das ARTIK System arbeitet viel mit Python 2.7. Beide sind nicht sonderlich kompatibel. Daher begrenzen wir die Home Assistant Installation auf eine abgeschlossenes Python Umgebung, eine so genannte virtual environment. Darin wird ann auch jedes von Home Assistant benötigtes Python Paket geladen und verwaltet, ohne mit der Pyhton Installation des Systems zu interagieren.

dnf install python-devel
dnf install redhat-rpm-config
dnf install libffi-devel
dnf install python3-devel

Nachdem die Softwarepakete installiert wurden, legen wir einen Benutzer für unsere Home Assistant Instanz an, da wir des Dienst nicht als root ausführen wollen und können.

useradd -rm homeassistant

Home Assistant benötigt ein Installationsverzeichnis. Das legen wir unter /srv an

cd /srv
mkdir homeassistant

Danach geben wir dem Verzeichnis den Besitzer homeassisatant

chown homeassistant:homeassistant homeassistant

Um auf USB Sticks und Dongles zugreifen zu können fügen wir den Benutzer noch der dialout Gruppe zu
usermod -a -G dialout homeassistant
Im homeassistant Verzeichnis legen wir dann die virtuelle Python Umgebung an.
cd /srv/homeassistant
su -s /bin/bash homeassistant
pyenv-3.5 .
source bin/activate
Der zweite Befehl startet eine Benutzereingabe als homeassistant, denn ab sofort wollen wir Befehle in diesem Benutzerkontext ausführen. Der dritte Befehl legt die eigentliche Python Umgebung an. Mit der letzten Zeile wechseln wir aus dem Linux Umfeld in die virtuelle Umgebung für Home Assistant in Python 3.5. Die Kommandozeile sollte jetzt so aussehen:
(homeassistant) [homeassistant@localhost homeassistant]$
Hier können wir jetzt endlich Home Assistant installieren. Das machen wir unter Zuhilfenahme von PIP.
pip3 install homeassistant
pip install sqlalchemy
Nachdem alle Pakete heruntergeladen und entpackt wurden können wir Home Assistant das erste mal starten. 
hass –script check_config
Der Befehl startet Home Assistant, installiert ein zusätzliches Paket (jetzt sind die Ausgaben in verschiedenen Farben markiert), führt einen Check der Konfiguration durch, und beendet sich dann wieder mit einem Fehler. Wir haben nämlich noch gar keine Konfiguration angelegt. Also starten wir Home Assistant nochmal auf den normalen Weg, diesmal mit hübschen farbigen Meldungen.
hass
Jetzt wird das Konfigurations-Verzeichnis .homeassistant unter /home/homeassistant angelegt und mit eine Standardkonfiguration geladen. Fehlende Pakete werden im Verlauf des ersten Starts installiert. Das ganze kann eine Weile in Anspruch nehmen. Bei mir hat es über 5 Minuten gedauert alle Komponenten zu laden. In der Ausgabe ist irgendwann die Zeile
2018-03-07 15:43:11 INFO (MainThread) [homeassistant.bootstrap] Home Assistant initialized in 322.72s
zu sehen. Jetzt können wir unter der IP die wir über DHCP erhalten haben die Weboberfläche von Homeassistant erreichen
Herzlichen Glückwunsch, Home Assistant läuft jetzt auf dem ARTIK Board. Da ich den Haupt-Server jedoch nicht ablösen möchte, werde ich die Instant auf dem ARTIK Board als Gateway zu den Schnittstellen nutzen, die der Intel NUC nicht mitbringt. Also Zigbee, Thread und Z-Wave. Jetzt brauche ich allerdings erst einmal ein paar Sensoren, die diese Protokolle verwenden.

Heizung automatisiert. Mit Home Assistant und MAX!

MAX! Starterkit bei Amazon

 Kurz vor der kalten Jahreszeit, bevor die Heizungen wieder auf Hochtouren laufen habe ich meinem Hausautomatisierungs-System eine steuerbare Heizung verpasst. Das MAX! System von eQ-3 besteht aus meheren Komponenten: Dem Thermostat an der Heizung, einem Sensor, der den Fensterzustand (offen, geschlossen) erkennt und ein Thermostat an der Wand, das die Temperatur anzeigt. Pro Zimmer können diese Geräte miteinander kommunizieren und autark arbeiten. Mit Hilfe des MAX! Cube LAN Gateways können mehrere dieser Gruppen miteinander agieren. Für die Wohnung habe ich also die drei meist genuzten Heizkörper und alle Fenster mit Thermostaten und Sensoren ausgestattet. Das Wohnzimmer hat noch ein Wandthermostat bekommen. Im Bad habe ich ebenfalls ein Thermostat an der Heizung, ein Sensor am Fenster und eine Anzeige an der Wand. Beide Gruppen sind mit dem MAX! Cube verbunden. Home Assistant ist ebenfalls mit dem MAX! Cube verbunden und kann so die Temperaturen der Sensoren auslesen und schreiben.

Fenster Sensoren für MAX! bei Amazon


Jetzt fehlt nur noch die Einbindung in die Automatisierung der Wohnung. Home Assistant bringt eine Schnittstelle für MAX! mit. Daher muss in der configuration.yaml nur noch die IP vom MAX! Cube eintragen. Die bezieht der Cube vom DHCP Server über die Ethernet Schnittstelle.

maxcube:
host: 192.168.0.10

Sobald Home Assistant verbunden ist, stehen die Werte als Devices zur Verfügung. Die Fenstersensoren sind als binäre Schaltsensoren, die Thermostate als Thermostat mit Temperaturkurve und verschiedenen Einstellmöglichkeiten abgebildet.
Einige der MAX! Sensoren in der Übersicht
Für die Zukunft fehlen hier noch die ganzen Automatisierungen. Diese sind im Moment über den MAX! Cube gesteuert, sollen aber schlussendlich über Home Assistant laufen.

Sonoff, S20, POW und SC mit neuer Firmware flashen

Von Itead.cc gibt es seit einiger Zeit verschiedene WiFi Smart Home Geräte. Einige dieser habe ich auch bei mir im Einsatz:

Allerdings läuft bei mir nicht die originale Firmware sondern Espurna. Diese gibt es aktuell in der Version 1.7 und stellt für mich alle gewünschten Funktionen bereit.

  • MQTT Interface für alle Daten
  • Webinterface für die einfache Konfiguration
  • OTA Update

Das Beste daran ist, dass die Firmware ohne Anpassungen mit Home Assistant kompatibel ist.

Hier mein Workflow für den Sonoff POW

Als erstes wird das Sigel gebrochen. Zurückschicken lohnt sich eh nicht.
Auf der Platine sind am Rand vier Punkte zu sehen. Diese sind folgendermaßen belegt:

Ein USB auf Serial Konverter mit 3.3V Signal (Amazon) wird angeschlossen. Wichtig ist, dass die Platine nicht von Außen mit Strom versorgt, oder sogar noch am Netzkabel hängt! Mit gedrücktem Knopf wird die Versorgungsspannung zugeschaltet. Jetzt befindet sich der ESP im Bootloader Modus und kann neu programmiert werden. Das mache ich mit Atom, der PlatformIO IDE.

Nachdem das Firmware Image geladen wurde, wiederhole ich die Prozedur mit Versorgungsspannung stecken, während der Knopf gedrückt ist. Jetzt ist das Dateisystem an der Reihe, das beinhaltet die HTML Applikation zum Steuern der Schalter und anzeigen der Sensordaten.

Wenn dann das Dateisystem geflasht wurde, startet die Software einen WiFi Access Point. Mit dem Passwort „fibonacci“ kann man sich dort anmelden. Mit dem Netzwerk verbunden kann man das Gerät unter der Adresse 192.168.4.1 erreichen. Dort muss das Standardpasswort geändert werden und ein neues vergeben. Anschließend kann man unter dem Menüpunkt WiFi das gewünschte WiFi Netzwerk eintragen, in dem sich der Schalter aufhalten soll.

Anschließend befindet sich der Schlater im Netzwerk. Unter MQTT kann dann noch die Adresse des MQTT Brokers eingetragen werden. Dieser übernimmt die Kommunikation zwischen den Geräten und Home Assistant.

Die Konfiguration für Home Assistant wird um folgende Punkte erweitert:
homeassistant:
#[…]
  customize:    
    sensor.sonoffpowa03803_leistung:
      friendly_name: Leistung
    sensor.sonoffpowa03803_spannung:
      friendly_name: Spannung

    sensor.sonoffpowa03803_relay:
      friendly_name: Schalter
#[…]

switch:
  – platform: mqtt
    state_topic: „/Herbert/switch/SONOFF_POW_A03803/relay/0“
    command_topic: „/Herbert/switch/SONOFF_POW_A03803/relay/0“
    name: „sonoffpowa03803_relay
    qos: 0
    payload_on: „1“
    payload_off: „0“

#[…]

sensor:
  – platform: mqtt
    state_topic: „/Herbert/switch/SONOFF_POW_A03803/voltage“
    name: „sonoffpowa03803_spannung“
    qos: 0
    unit_of_measurement: „V“
  – platform: mqtt
    state_topic: „/Herbert/switch/SONOFF_POW_A03803/power“
    name: „sonoffpowa03803_leistung“
    qos: 0
    unit_of_measurement: „W“

Nach einem Neustart stehen nun drei weitere Elemente Home Assistant zur Verfügung. Viel Spaß beim Nachbauen