OSICs – Open Source Integrated Circuits

In der sechsten Folge der Kurzschluss Junkies habe ich mit Basti und Chris über FPGA- und
ASIC-Entwicklungen gesprochen. In dieser Beitragsreihe möchte ich Open Source Software zur IC-Enticklung vorstellen und auf deren Fähigkeiten, bzw. Möglichkeiten eingehen.

Ein Beispiel, dass mit freier Software ein IC erstellt werden kann, ist die Realisierung eines auf einem RISC-V basierenden SoCs. Der verwendete Softcore ist der PicoRV32 in einem QFN-48 Package der mit ADCs, DACs und einer seriellen Schnittstelle (SPI) erweitert und bei efabless gefertigt wurde.
Die Toolchain die dafür hauptsächlich verwendet wurde heißt Qflow und verbindet Tools zur Synthese, Logikminimierung, Placement und Routing von Standardzellen-Logik. Die Firma efabless bietet die Möglichkeit eigene Designs zu realiserun und hostet eine Toolchain die selbst teilweise auf Qflow basiert.

Der Hauptentwickler von Qflow heißt Tim Edwards und dieser hat bei eeweb.com ein Interview gegeben in dem er seine Arbeit und Philosophie zur freien Software für den Chip Entwurf vorstellt und erklärt. Der Aufbau von Qflow ist auf opencircuitdesign.com in Detail beschrieben, dennoch möchte ich nachfolgend einen kurzen Abriss über die wichtigsten Elemente der eingebundenen Software geben.

Qflow nutzt zur Synthese yosys, eine offene Synthessuite für FPGAs und ASICS, die von Clifford Wolf entwickelt wurde. Diese synthetisiert Verilog Designs und bietet – bei vorhandener Bibliothek – nicht nur eine Logikminimierung an, sondern auch ein Mapping auf Standardzellen. Die Logikminimierung erfolgt mittels abc, einem Tool das bei der Universität von Berkley entwickelt wurde und auch eine Verifikation von Logikschaltungen zur Verfügung stellt. Die Stärke von yosys liegt in den implementierten Durchläufen zur Synthese und Verifikation. Diese können je nach Anforderung adaptiert werden um so die Optimierungdurchläufe auf mögliche Besonderheiten anzupassen. Solche Besonderheiten können zum Beispiel der Standardzellenbibliothek des Herstellers geschuldet sein.
Eine weitere Stärke ist die Möglichkeit yosys über Skripte bedienen zu können.

Die Platzierung erfolgt mit graywolf, einem Tool das mittels Simulated Annealing Standardzellen plaziert. graywolf ist ein Fork des mittlerweile kommerziellen Tools Timberwolf, das für eine Lizenz einen Preis von 50k USD ausruft und in Yale entwickelt wurde.

Qrouter schließlich verbindet die Standardzellen mittels dem Lee-Algorithmus und unterstütz bis zu sechs Metalllagen. Damit lassen sich, wie das Beispiel des RISC-V basierenden SoCs zeigt, recht komplexe und große Designs realiseren.
Abgerundet wird die Toolchain mit einem LVS-Checker (netgen) swoie einem Layout-Editor mit der Fähigkeit zum DRC (magic).

Die größten limitierenden Faktoren stellen letztlich die Bauteilbibliothek und die Zieltechnologie dar. Die Bauteilbibliothek insofern, als dass diese von den einzelnen Halbleiterherstellern i.d.R. gekauft werden muss und die Zieltechnologie dahingehend, dass es eine Sache ist, ein Design mit einer 120nm-Struktur oder größer zu realisieren oder 90nm und kleiner. Die Hauptschwierigkeit stellt hier die Abschätzung der Laufzeitverzögerungen dar. Wer sich aber einfach für Chip-Entwicklung, Algorithmen und DIY-Realisierungen mit offenen (beispielhaften) Bibliotheken interessiert, oder gar mit einem Start-Up/kleinem Unternehmen Chips realiseren möchte, bekommt mit diesen Projekten einen wunderbaren Einstieg und nützliche Software an die Hand mit der wirklich etwas realisiert werden kann. Dank Quelloffenheit können diese Programme sogar angepasst und erweitert werden.

Abschließend möchte ich erwähnen, dass diese Projekte nicht nur einen tiefgehenden Einblick in die Herausforderungen für CAE-Tools zur Realisierung von integrierten Schaltungen bietet, sondern auch exzellente Beispiele für gut implementierten und dokumentierten Code sind (überwiegend C und C++).

In weiteren Beiträgen möchte ich die erwähnten Algorithmen genauer vorstellen, sowie weitere freie Software für den Chip-Entwurf sowie eine freie, erweiterbare Suite für Xilinx FPGAs. Auch kleine Tutorials und Anleitungen zur Nutzung der Software sind angedacht.
Schreibt, kommentiert, diskutiert und abonniert den Podcast!

Links:

Knöpfchenspiel 1 – Systemübersicht

Heute beschreibe ich das Knöpfchenspiel. Wie bereits im Podcast erzählt, ist das primäre Ziel das Spiel bis April fertig zu bekommen. Daher gibt es bereits einige fertige Komponenten.

Das originale Knöpfchenspiel steht meistens in Spielhallen und kann dort gegen Geldeinwurf gespielt werden. Dazu müssen die leuchtenden Knöpfe gedrückt werden. Jeder Knopfdruck gibt einen Punkt. Wenn ein nicht leuchtender Knopf gedrückt wird, wird ein Punkt abgezogen. Das sieht dann so aus:

Das von mir geplante System ist ähnlich aufgebaut. Nur dass die Spieler nicht gegenüber, sondern nebeneinander spielen und dass die Punkteanzahl an einem großen Fernseher dargestellt wird und nicht auf einer 7-Segementanzeige. Dazu wird das System in mehrere Submodule aufgeteilt.

 
  • System-Controller (Raspberry-Pi)
  • Bus-Interface (Differenzieller I²C Bus Treiber)
  • Knöpfchen-Controller (STM32F030)
  • Knöpfchen
  • LED-Band-Controller
  • Power Supply

System-Controller

Der Raspberry Pi übernimmt die Steuerung des Spiels und die Anzeige der Punkte am Bildschirm. Dazu wird das HDMI Interface in maximaler Auflösung (1920×1080) betrieben. Weiterhin hängt am Pi noch eine Webcam (USB) mit der die Spieler für die High-score Liste fotografiert werden.
Auf dem Raspberry steckt die DIIC Baugruppe. Das Bus-Interface Board
Bus-Interface

Bus-Interface

Um einen stabilen I2C Bus über alle Baugruppen zu bekommen, habe ich mich für einen Differenziellen Bustreiber entschieden. Dieser ist in der Lage die Eindraht-Signale der I2C Strecke auf zwei differenzielle Signale aufzuteilen. Diese sind wesentlich unempfindlicher gegenüber elektromagnetischer Störung. Das Bus-Interface Board besitzt die nötigen Stecker für den Knöpfchenspiel Bus, ein RJ45 Stecker, der über normale LAN-Kabel miteinander verbunden werden kann.

Knöpfchen

Das Knöpfchen ist ein 60mm durchmessender Plastik Druckknopf (Schließer), der von hinten beleuchtbar ist. Die Beleuchtung wird von einer weißen LED übernommen.

 

Knöpfchen Controller

Die 16 Knöpfchen sind an dem Knöpfchen-Controller angeschlossen. Der Controller ließt den Schaltzustand der Knöpfchen ein und vergleicht ihn mit den Lampen. Wenn die Lampe an war, wird der Punktestand um eins erhöht, wenn die Lampe aus war, wird der Punktestand reduziert, bis er bei 0 angekommen ist.
Auf dem Knöpfchen-Controller Board ist ein DC/DC Wandler, der die 12V Bus-Spannung auf 5V herab setzt. Die 5V werden dann mit einem linear Regler auf 3,3V für den Controller heruntergesetzt. Die Knöpfchen und Lampen in den Knöpfchen können mit 12V, 5V, oder 3,3V versorgt werden.
Der Controller besitzt ein I2C Slave-Interface, dass die Spielinformationen an den Spiel-Controller übertragen kann.

LED-Band-Controller

Um das Spiel von Außen attraktiver zu gestalten, habe ich vor eine LED-Leiste an der Kante anzubringen, ähnlich wie bei der oben gezeigten Variante. Dafür habe ich WS2812 LEDs als Leitungsband vorgesehen. Gesteuert werden die LEDs von einem eigenen Controller. Wahrscheinlich der Arduino Nano, den ich schon für die Bühnenkulisse verwendet habe. Den kann man über die USB -> UART Brücke auf dem Arduino vom Raspberry Pi ansprechen.
Für das System werden zwei AC/DC Netzteile eingesetzt. Ein 5V und ein 12V Netzteil. Das 5V Netzteil ist für die Versorgung des Raspberry Pis und LED-Band vorgesehen. Das 12V Netzteil übernimmt die Versorgung des Bus-Systems, Knöpfchen-Controller Boards und der Knöpfchen. Beide werden über den gleichen Kaltgeräte-Stecker angeschlossen und abgesichert.

Nokia 3210 Retro Fit Board Teil 9

Ich habe leider immer noch Probleme mit der Power Versorgung. Der LiPo Chip, der die Ladespannung für den Akku aus die 5V USB zur Verfügung stellt, funktioniert einwandfrei. Der dahintergelegene Teil, der zwei mal 3,3V aus den 4,2 V der Batterie machen soll, hat teilweise Probleme die Spannung stabil zu halten, was dazu führt dass der Microconroller abstürzt.

Die Lösung wird sein, den kompletten Spannungsregler zu ersetzen. Dazu werde ich eine kleine Schaltung aufbauen, die das mit möglichst wenig Komponenten schafft. Dann hoffe ich, dass ich eine stabile Verbindung zum Controller bekomme um die anderen Komponenten in Betrieb zu nehmen.

Für den 3,3V Regler werde ich auf ein integriertes Schaltregler Modul zurück greifen. Das kann dann hoffentlich die Spannung zuverlässig zur Verfügung stellen.

Ein Redesign des PCB werde ich wahrscheinlich nicht durchführen, dafür ist das 6-Lagen Board zu teuer.

Nokia 3210 Retro Fit Board Teil 8

Ich bin mitten in der Inbetriebnahme des Retro Fit Boards für das Nokia 3210. Dabei sind mir einige Probleme aufgefallen.

Das Board hat einen Fehler im Kupfer der Rückseite. Glücklicherweise ist das Kupfer eine große Struktur und kann relativ einfach aufgekratzt werden um den Fehler zu entfernen.

Die Kupferfläche zum Anbinden der Speicherdrossel der 3V3 Versorgung ist mit der GND Plane kollidiert. Beide Planes besitzen die Priorität 0 und werden daher übereinander liegend generiert. Das ganze ist sehr ärgerlich, wird aber im DRC gezeigt… Den hätte ich besser mal komplett durchgeschaut.

Jetzt bleibt nur die manuelle Nachbearbeitung der Leiterplatte. Wenn die beiden Kupferflächen aufgetrennt sind, funktioniert auch der Buck Regler für das 3V3 Netz. Allerdings nur auf instabilen 2,6V.  Die Instabilität der Versorgungsspannung führt dazu, dass die CPU nicht zuverlässig läuft. Die Kommunikation mit JTAG funktioniert nur sporadisch und es kommt oft zu Abbrüchen der Verbindung. Hier helfen 10µF am Ausgang der Spule L202, aber in manchen Situationen bricht auch so die Spannung zusammen.

Der Boostconverter, der Die Batteriespannung auf 4V hochsetzen soll, passt nicht auf das Footprint, das vorgesehen ist. Hier habe ich vorerst eine Brücke zwischen Dem Eingangs Kondensator und der Spule L202 gelötet. Ich habe ein „Texas_S-PVSON-N8_NoThermalVias“ aus der KiCad Bibliothek verwendet. Der Chip der da drauf soll ist allerdings ein WSON Chip mit 2x2mm Kantenlänge der PVSON ist 3x3mm. Da hilft nur manuelles Nacharbeiten.

Für den 3V3 Buck-Konverter habe ich einige Experimente mit dem Layout gemacht. Die stabilste Spannung habe ich bei zwei Spulen je 4,7µH und verteilter Ausgangkapazität > 22µF erhalten.

Zwei Spulen und verteilte Ausgangskapazität

Diese Schaltung werde ich nun auf dem komplett bestückten Board ausprobieren und dann sehen wir weiter.

Ein Blick auf KiCad [Fertige Leiterplatte]

Wie in den letzten Wochen bereits beschrieben haben wir eine Schaltung in KiCad eingegeben, danach eine Liste der verwendeten Bauteile angelegt und anschließend die Leiterplatte erstellt und die Fertigung in Auftrag gegeben. Heute schauen wir uns das Ergebnis an und betrachten, was alles im Prozess der Entwicklung einer solchen Baugruppe schief gehen kann.

Links – benötigte Bauteile zur Bestückung der Platte
Rechts – unbestückte Leiterplatten

Die Leiterplatten werden in einer Vakuumverpackung angeliefert. Auf den ersten Blick sind die einwandfrei und so wie wir uns das fertige Produkt vorgestellt werden. Doch der Teufel liegt im Detail. Nach bestücken und Verlöten der Bauteile, sind einige Fehler im Schaltplan, sowie in den Layoutdaten aufgefallen.

Um die Fehler der Schaltung verstehen zu können muss erst einmal die Funktion erklärt werden. Die Baugruppe soll nach betätigen des ‚Enable‘ Tasters ein Magnetventil mit einer Anzugsspannung versorgen. Diese Spannung soll eine kurze Zeit anliegen und danach selbstständig in eine PWM umgewandelt werden. Diese soll so lange erhalten bleiben, bis der ‚Enable‘ Taster nicht mehr betätigt ist.

Fertig bestückte Platine

Fail #1

Der Enable Eingang schaltet lediglich das Delay zur Logik dazu, startet dieses jedoch nicht. das Delay wird sofort nach Anlegen der Betriebsspannung gestartet und ist bei betätigen des Tasters bereits abgelaufen.
Fix: Spannungsteiler auflösen, mit Fädeldraht an ‚Enable‘ löten.

Fail #2 

Der Pfostenstecker für das Magnetventil ist nicht korrekt angeschlossen. Beim verschieben des Steckers ist eine neue Leitung auf der Bottom Seite hinzugekommen, allerdings wurde die Kupferfläche nicht erneut ausgefüllt und ist somit direkt mit dem Signal verbunden. Das DRC hat diesen Fehler nicht gefunden!
Fix: Mit Skalpell die Verbindung auftrennen und mit Fädeldraht korrekt verbinden.

Fail #3 

Zum Messen mit dem Oszilloskop befinden sich kaum Massepunkte auf der Platte. Um mit dem Oszilloskop sinnvoll Signale auf einer Baugruppe zu messen, ist es wichtig naheliegende, also kurze Verbindungen zur Masse zu bekommen. Es ist durchaus akzeptabel wenn für diese Baugröße nur ein solcher Verbindungspunkt bestünde. Tut er aber nicht.
Fix: Mit Skalpell den Lötstopplack der Massefläche entfernen und ein Stück Draht dranlöten.

Fazit

KiCad eignet sich hervorragend zur Erstellung von kleinen Projekten sowie Erzeugung von Stücklisten und Fertigungsdaten. Es wird sich zeigen wie die Entwicklung voranschreitet. Spannend wird auch bleiben, wie die Verwaltung von Stücklisten in den nächsten Versionen gehandhabt wird. Bis dahin wird aber noch einige Zeit vergehen.

Ein Blick auf KiCad [Design zur Fertigung]

Wir haben uns in den letzten beiden Wochen angeschaut, wie eine Schaltung in KiCad erstellt und die benötigten Daten zur Erstellung der Leiterplatte generiert werden. Der Prozess, der aus einem Schaltplan eine Leiterplatte macht beginnt mit der Auswahl eines Herstellers. Denn von Beginn an ist es wichtig zu wissen, welche physikalischen Grenzen dem Leiterplattendesign gesetzt sind. Dazu zählt der Mindestabstand zwischen Leiterbahnen, die Mindestgröße von Bohrungen für Durchkontaktierungen und die Mindestbreite der Aussparungen im Lötstopplack für die Lötpads.
Alle diese Werte werden von dem Fertiger festgelegt und können auf dessen Webseite gefunden werden. Einer dieser Anbieter ist Multi-cb. Bei Multi-cb gibt es jede Menge Hinweise dazu, wie die Grenzen der Leiterplatte festzulegen sind, wenn man keine Sonderanfertigung wünscht. Für die Meisten Projekte wird auch keine Sonderanfertigung von Nöten sein, es kann also der kostengünstige Pool für die Fertigung der Leiterplatten gewählt werden.

Der Leiterplatten Kalkulator gibt auch einige Hilfestellungen, was die optimale Bestellauslegung betrifft. Zuerst legt man ein Projektname fest, gibt an, welche Größe und welche Oberfläche gewünscht ist. Daraus kann die erste Ermittlung des Preises gewonnen werden. Meistens bekommt man dann angezeigt, dass die Fertigungsdauer ohne Aufpreis wesentlich kürzer (5AT) sein kann als 20AT. Die Oberfläche HAL bleifrei ist die günstigste. Diese Oberfläche besteht aus einer Zinnoberfläche, die mit Heißluft auf die blanken Kupferflächen aufgebracht wird.
Wie bei der Oberfläche gesehen sind die voreingestellten Werte die günstigsten. Jede Änderung im Fertigungsprozess führt dazu, dass die Platte eventuell aus dem Pooling Prozess herausfällt und als Einzelcharge angefertigt werden muss. Der Pooling Prozess bedeutet, dass viele verschiedene Designs auf einem Nutzen, also eine große Platte, untergebracht werden und somit die Rüst-, Arbeits- und Verwurfskosten auf alle Pooling Teilnehmer umgelegt werden können.

Die einzige Ausnahme ist der Topseitige Positionsdruck. Der ist standardmäßig nicht ausgewählt, kostet allerdings auch nichts extra. Man muss mit den Werten ein wenig spielen um die Ideale Konfiguration zu erreichen. Grundsätzlich gilt, wenn ein extra Fertigungsschritt dazu kommt, wird die Platte teurer.

Anhand der ausgewählten Parameter werden die verschiedenen Grenzen der Design-Regeln festgelegt. Im Kalkulator haben wir festgelegt, dass die kleinste Leiterbahnbreite 150µm sei. Diese Größenbegrenzung gilt für alle Leiterbahnen, alle Vias und den Abstand zwischen den Leiterbahnen.
Wir legen also 0,15mm als Untergrenze für die Leiterbahnbreite fest. Leiterbahnen, die Strom führend sind, werden mit dieser Breite unter Umständen sehr heiß. Der PCB Kalkulator von KiCad kann dazu mehr Auskunft geben. Dementsprechend sollten Leiterbahnenbreiten festgelegt werden.
Wie in den anderen Teilen dieser Serie gehen wir davon aus, dass das Design bereits anhand der ausgewählten Designregeln erstellt wurde. Das kann zum Beispiel wie folgt aussehen:

Fertiges PCB Design

Die hier erstellte Platte hat die angegebenen Abmaße von 45mm x 45mm und ist mit zwei Lagen vollständig entflochten. KiCad bietet zur Vorschau der Leiterplatte eine 3D Ansicht der CAD Daten. Diese kann unter Ansicht -> 3D Darstellung angezeigt werden. Mit Hilfe der Vorschau kann zum Beispiel die Lesbarkeit des Siebdrucks bestimmt werden, oder ob Gehäuse leicht bestück- und lötbar sind.

3D Vorschau der Leiterplatte

Gerberdaten erzeugen

Um aus dem Design die zur Herstellung der Leiterplatte notwendigen Dateien zu generieren muss festgelegt werden, welche Lagen des Designs für die Herstellung notwendig sind. Jede dieser Lage wird in einem eigenen Arbeitsgang hergestellt. Das gängigste Format, in dem die Fertigungsdateiein abgelegt sind ist das Gerber Format. Dieses wird in einem Standard festgelegt und von allen Leiterplatten Herstellern unterstützt.

In unserem Projekt benötigen wir zwei Lagen Kupfer und zwei Lagen Lötstopplack. sowie Siebdruck für die obere Lage. Weiterhin benötigen wir die Kanten-Lage, auf der die Grenzen der Leiterplatte eingezeichnet sind. Mit einem Druck auf „Plotten“ werden die ausgewählten Daten erzeugt und in dem angegebenen Ordner gespeichert.
Es fehlen jetzt nur noch die Daten für die Bohrmaschine. Diese können unter
Datei -> Fertigungsdateien -> Bohrdatei *.drl erzeugt werden. Multi-cb benötigt metrische Angaben. Darauf ist unbedingt zu achten, damit die Bohrungen passend zu den Footprints sind.

Ansicht der Gerberdaten zur Verifizierung vor der Bestellung

Nachdem alle Fertigunsdateien erstellt wurden, kann das Ergebnis mit dem ebenfalls in KiCad enthaltenen GerbView angezeigt werden. In diesem Programm werden alle erzeugten Gerberdateien übereinandergelegt und Fehler werden sofort sichtbar.

Um die Bestellung der Platte abzuschließen werden die Produktionsdateien in ein Zip-Archiv gepackt und über die Webseite zu multi-cb hochgeladen. Die Produktion der Leiterplatte beginnt jetzt. Es ist auch der Zeitpunkt gekommen alle Bauteile der BOM zu bestellen und bereitzulegen.

Ein Blick auf KiCad [Netzliste und BOM]

Wie im ersten Teil bereits erwähnt, gibt es in KiCad eine Trennung zwischen Schaltsymbol und physikalischem Bauteil. Alle Symbole im Schaltplan werden mit Bezeichnern angelegt, besitzen Pins mit Pinnummern und werden anschließend in einer Netzliste ausgegeben. Die Netzliste enthält die Informationen, welche Pins eines Symbols/Bauteils mit welchen anderen verbunden sind. Diese abstrakte Information wird nun mit real existierenden Bauteilen verbunden. Doch dazu muss KiCad wissen, wie die Bauelemente aussehen, die im Schaltplan lediglich Symbole mit Pinnummern sind. Dazu wird das Programm CvPcb verwendet. Hier erscheint in der mittleren Liste jedes in der Schaltung verwendete Bauteil. Links sind die Bibliotheken der Lötpads zu finden und rechts eine gefilterte Auswahl an Lötpadformen.

Erst wenn jedes Element im Schaltplan ein Footprint zugewiesen bekommen hat, kann das Layout der Leiterplatte beginnen.

Eng mit dem Zuweisen der Footprints zu den einzelnen Schaltsymbolen verbunden ist das Führen einer Stückliste; Die BOM (bill of materials). Die aktuelle Version von KiCad ist momentan im Umbau, was das Erstellen der BOM betrifft. Normalerweise wird eine BOM abhängig der verschiedenen Bauelemente sortiert. Sodass nicht alle 10k 0603 SMD Widerstände einzeln aufgeführt werden, sondern der Widerstand einmal mit Stückzahl und eine Liste alle Bezeichner.

Die aktuelle KiCad Version ermöglicht das Anlegen von Plugins zur Erstellung von Stücklisten. Die zur Zeit einfachste Lösung ist das Erzeugen der Stückliste über ein Python-Script, das mit KiCad ausgeliefert wird. Allerdings sind in dem Windows Release von kicad.nosoftware.cz die Skripte nicht mitgeliefert. Zu finden sind sie im GitHub von KiCad, oder hier zum einfach herunterladen.

Durch einfügen der Kommandozeile „C:\KiCad\bin\python.exe“ „c:\kicad\share\bom-in-python\bom_csv_grouped_by_value_with_fp.py“ „%I“ „%O“ wird das Plugin aufgerufen und erstelle eine Datei mit der Endung .bom. Die Datei ist eine Textdatei, die zum Beispiel in LibreOffice oder Excel geöffnet werden kann. Sie enthält die Bauteilbezeichner, Anzahl der Bauteile, deren Wert, Das Symbol und die Pad Geometrie für die Platine. Weiterhin gibt es noch eine Beschreibung zum Bauteil und das Verkäufer Feld.

 

Die Übersicht über alle verschiedenen Bauteile eines Projektes ist die Grundlage zur Erzeugung der BOM. Mit diesem Dokument kann jetzt das Auswählen der Bauelemente beginnen. Dazu füge ich die Spalte „Partnumber“ neben dem Feld „Value“ hinzu. Dort werden die Herstellernamen Bauteile eingetragen. Um Bauteile zu finden verwende ich zum Beispiel RS oder Farnell. Die Herstellerbezeichnung ist der gesuchte Wert für die Stückliste. Dieser wird für jedes Bauteil eingetragen. Nachdem alle Komponenten der BOM eine Herstellerbezeichnung haben geht es nun an das Bestellen der Bauelemente. Um eine Übersicht der Kosten für das Projekt zu erhalten kann man zum Beispiel Teilesuchmaschinen, wie Octopart verwenden.

Bei dieser Strückliste teilt mir Octopart mit, dass zwei Teile nicht verfügbar sind und dass ein Teil nur bei einem Hersteller verfügbar ist. Daher werden diese Teile in der BOM durch kompatible Bauelemente ersetzt, sodass die BOM vollständig von einem der Distributoren zu beziehen ist.
Nächste Woche schauen wir uns dann das Layouten und der Leiterplatte und erstellen der produktionsrelevanten Daten an.

Ein Blick auf KiCAD [Schaltplan]

KiCad ist ein FOSS Softwarepaket, dass zur Entwicklung von elektronischen Schaltungen und das Design der Leiterplatte verwendet werden kann. Es ist seit 2007 in Entwicklung und mittlerweile so weit, dass es zum professionellen Einsatz angewendet werden kann. Das Projekt wird vom CERN unterstützt, die einige neue Funktionen für den Schaltplaneditor, das Backend und den Layouter zur Verfügung gestellt hat.

Für meine kleineren Projekte, habe ich bis jetzt immer nur den Schaltplaneditor verwendet. Bei einem aktuellen Projekt, möchte ich allerdings auch die Leiterplatte herstellen lassen. Dabei soll die Platte im KiCad Layouter entwickelt werden. Diese Artikelserie wird sich mit den Abläufen und Tücken von der Erstellung einer Schaltung, bis hin zur fertigen Leiterplatte befassen. Die Aufteilung der Artikel wird sich an dem Workflow orientieren, den man bei der Erstellung einer Leiterplatte durchläuft. Es wird sich dabei nicht um eine Anleitung zum erstellen von Schaltungen handeln, sondern vielmehr ein Überblick darüber, wie die Arbeit mit KiCad abläuft.
Begonnen wird beim Erstellen des Schaltplans, danach wird die Netzliste erstellt. Diese enthält alle Informationen über die verwendeten Bauteile und deren Eigenschaften (Namen, Pinbelegung und Landepads) sowie Verbindungen. Nebenbei wird die Liste der Bauteile erstellt, die daraufhin zu beschaffen sind. Mit der Netzliste kann dann im dritten Teil die Leiterplatte entworfen werden. Neben der Platzierung der Bauteile werden wir auch die fertigungstechnischen Feinheiten betrachten und den Prozess der Bestellung durchführen. Wenn die Platte dann eingetroffen ist, wird der letzte Artikel, die Bestückung der Platte und das Löten im Reflow-Prozess beschrieben.

KiCad Installieren

Ähnlich wie bei anderen FOSS Projekten, wird KiCad ständig weiterentwickelt und man kann sich die aktuellste Version als Quellcode aus dem Internet herunterladen. Für viele Betriebssysteme gibt es bereits fertige Binärpakete, die installiert werden können. Zur Zeit sind neue Builds auf http://kicad.nosoftware.cz/ zu finden. Wer sich die Mühe machen möchte, das Programm selbst zu kompilieren, kann dafür den Winbuilder verwenden.
Ich beziehe mich in dieser Artikelserie auf die Version 2015-01-17 BZR 5376 aus dem nosoftware.cz Fundus. 

KiCad Manager

Nach dem Start von KiCad wird der Projektmanager gestartet. Dieser zeigt die verwendeten Dateien, des aktuellen Projekts an und bietet eine Schnellstartleiste für die benötigten Programme, wie Schaltplan- und Symboleditor, oder Layouter. Weiterhin sind noch einige kleine Tools, wie Bitmap zu Komponenten-Konvertierung, Berechnungs-Tools und Schaltplan-Layouteditor. 
Von diesem Fenster aus wird ein Projekt verwaltet. 

Der Schaltplaneditor

Der Schaltplan wird über den Editor Eeschema erstellt. Die Abbildung zeigt den fertigen Schaltplan eines Projekts. Die Übersichtsseite des Schaltplans, also die erste Seite ist hier wie ein Blockschaltbild zu betrachten. Verschiedene Funktionen sind in einzelne Blätter (Subsheets) aufgeteilt. Das muss man nicht unbedingt machen, es macht die Schaltung ab einer gewissen Größe allerdings übersichtlicher. Ich habe meine Schaltungen eigentlich immer auf A3-Größe festgelegt und gehe von dort aus in Subsheets um die Komplexität der einzelnen Komponenten geringer zu halten. Um Signale zwischen den einzelnen Blättern austauschen zu können, werden hierarchische Labels verwendet. Zwei unterschiedliche Netze, die mit einem gleichnamigen Label verbunden werden, sind danach das gleiche Netz. Auf dem Hauptblatt sieht man dann die Verbindungen der einzelnen Untergruppen. Somit wird die Logik abstrahiert und einfacher auf den ersten Blick zu verstehen.
Ein Schaltplan besteht aber nicht nur aus Subsheets, sondern auch aus Komponenten, die die eigentliche Schaltung darstellen. Diese werden über das ‚Bauteil hinzufügen‘ Menü ausgewählt und in den Schaltplan eingefügt. Das Menü erscheint, wenn man das Bauteil-Werkzeug ausgewählt hat und in den Schaltplan klickt. Hier sind alle Bauteile, die in der Bibliothek abgelegt sind zu finden. Über die Filter Eingabe kann nach eine bestimmten Teil gesucht werden, über das Auswahlmenü können die einzelnen Bibliotheken durchsucht werden. Der untere Bereich dient als Vorschau für die Komponente und gibt zusätzliche Informationen zu dem Bauteil, sofern diese bei der Erstellung hinterlegt wurden. Das gewählte Bauteil kann nach dem Drücken des OK-Buttons in den Schaltplan eingefügt werden. 
Sollte ein Bauteil nicht in der Bibliothek zu finden sein, muss es neu angelegt werden. Es sind zwar mittlerweile eine Vielzahl von Bauteilbibliotheken im Internet zu finden, doch es kann vorkommen, dass es dieses eine Bauteil mit diesem Gehäuse und diesem Pinout eben noch nicht gibt. Der Bauteil-Editor von KiCad ist allerdings einfach zu benutzen, wenn man das System hinter den Bibliotheken einmal verstanden hat. Eine Bibliothek ist eine Datei. In dieser Datei befinden sich Beschreibungen für eine oder mehrere Bauteile. Die Bibliotheksdatei muss in einem KiCad bekannten Verzeichnis liegen und zusätzlich noch als aktive Bibliothek ausgewählt werden. Erst dann ist sie in der Bauteil-Auswahl verfügbar. Die erzeugten Biblioteks-Dateien sind im Textformat gespeichert. Diese Eigenschaft machen wir uns später zu Nutze, wenn es darum geht verschiedene Versionen zu verwalten.
Das neue Bauteil bekommt einen Namen. Es wird festgelegt, welche Bezeichner für das Bauteil verwendet werden soll (R für Widerstände, L für Induktivitäten, C für Kondensatoren, V für Dioden, usw.) und die Anzahl der Komponenten pro Bauteil (bspw. für Dual-FETs oder Widerstandsarrays).
Daraufhin kann das Bauteil gezeichnet werden und die Pins eingefügt, benamt und benummert werden. Wichtig ist festzulegen, wie der Energiefluss der Pins ist. Hier sollte Jeder Versorgungspin (VCC, GND, …) als Eingang, jeder Ausgangspin als Ausgang (Vout, …) und jeder Controller-Pin als Bidirektional festgelegt werden. Man kann hier noch weiter ins Detail gehen, wenn man das möchte. Die grobe Festlegung des Energieflusses ist aber wichtig um spätere Fehler im Design Rule Check (DRC) zu vermeiden.

In den Eigenschaften des Bauteils, können für später wichtige Informationen hinterlegt werden. Einmal grundsätzliche Eigenschaften zur Darstellung des Symbols, ähnlich der Einstellungen beim Erstellen des neuen Symbols. Eine Beschreibung das Bauteils und das Datenblatt sollten nicht fehlen, so kann während der Schaltplaneingabe schnell auf das Datenblatt zugegriffen werden. Für viele Bauteile gibt es unterschiedliche Beschreibungen, die mit der eigentlichen Funktion des Bauteils nicht viel zu tun haben (Gehäuseform, Verpackungseinheiten, …). Außerdem gibt es Bauteile, die von verschiedenen Herstellern geliefert werden, aber die gleiche Beschaltung und Funktion aufweisen. So können dem Bauteil Aliase vergeben werden, um es unter diesen Namen in der Liste der Komponenten zu finden. Obwohl im Schaltplaneditor keine fixe Verbindung von Schaltplakomponente und physikalischem Bauteil besteht, kann dem Bauteil eine Reihe von Landungspads (Footprints) für die Leiterplatte mitgegeben werden. Das erleichtert später die Zuweisung von Bauteilform zu Bauteil. 

Bauteile-Bezeichner

Nachdem der Schaltplan in den Editor eingegeben wurde, oder schon währenddessen kann der Komponente ein Bezeichner zugewiesen werden. Beim Erstellen des Symbols haben wir gesehen, dass jedes Symbol einen Prefix besitzt, der die Art des Bausteins beschreibt (R, L, C, V, …). Dazu kommt dann meistens noch eine Nummer, die das Bauteil eindeutig kennzeichnet. So entsteht dann der Widerstand R100 oder der Kondensator C371. Die Bezeichnung kann manuell beim Hinzufügen des Symbols erfolgen, oder automatisch mit dem Annotation-Tool. Dieses Tool erlaubt es uns entweder alle, oder alle noch nicht benannten Bauteile mit den nächsten freien Nummern zu benennen. Dabei kann der aktuelle Schaltplan, oder alle Schaltpläne des Projekts beachtet werden. Die nächstmögliche freie Zahl ist aber auf das ganze Projekt bezogen, denn jeder Bezeichner darf nur einmal vorkommen.
Das Annotationstool besitzt die Möglichkeit, die zu benennenden Bauteile entweder waagerecht, oder senkrecht zu ermitteln und zu bezeichnen. Ich habe eigentlich immer die senkrechte Reihenfolge gewählt. Der nächste Punkt, die Annotationsauswahl, lässt es zu, dass wir Blatt abhängig die Bezeichnung der Bauteile erhöhen. So wird der erste Widerstand auf Blatt 3 mit 300 bezeichnet, der zweite mir R301 usw. Später hilft das den Widerstand von der Leiterplatte wieder in den Subsheets zu finden. Das ist vor allem im Fehlerfall praktisch.

DRC

Der Design Rules Check ist ein sehr hilfreiches Tool beim verifizieren der Schaltung. Er schaut sich den kompletten Schaltplan an und bestimmt anhand von gegebenen Bedingungen, ob der Schaltplan so regelkonform ist. Diese Regeln werden in den Optionen festgelegt. Das Bild zeigt einen typischen Fehler; Ein Pin eines Bauteils ist nicht angeschlossen und der Pin wurde nicht explizit, als nicht verbunden gekennzeichnet. Im Schaltplan wurde die Stelle markiert und wird beim Klick auf den Fehler in der Fehlerliste hervorgehoben. Allerdings ist das nur ein Warnhinweis und kann ignoriert werden. In den Optionen des DRC kann festgelegt werden, wie mit verschiedenen Bedingungen umgegangen werden soll. Beispielsweise ist es OK zwei Eingangspins oder Tri-State-Pins miteinander zu verbinden, aber wenn zwei Ausgangspins verbunden werden, wird ein Fehler erzeugt. Diese Regeln sind nicht verpflichtend, können aber helfen, dass beim eingeben des Schaltplans keine Fehler gemacht wurden.

Zusammenfassung

Der Schaltplan wird in EEschema eingegeben. Dabei werden Symbole aus einer Bibliothek verwendet. Diese Symbole sind nicht zwangsweise an ein Physikalisches Bauteil gebunden. Die Bibliothek ist eine Textdatei in der alle zu dieser Bibliothek gehörenden Symbole hinterlegt sind.
Komplexe Schaltungen können auf Subsheets ausgelagert werden. Diese können Signale mit hierarchischen Labels austauschen. Das Bezeichnen von Komponenten kann manuell oder mit dem Annotationstool gemacht werden. Am Ende kann mit dem DRC ermittelt werden, ob noch grobe Fehler im Schaltplan zu finden sind.
Wie die virtuellen Komponenten im Schaltplan zu ihren physikalischen Gegenstücken umgewandelt werden, warum ein Widerstand auch ein wichtiges Bauteil ist, warum es sinnvoll ist Schaltplansymbol und physikalisches Bauteil zu trennen und was die Netzliste macht, betrachten wir dann im nächsten Beitrag.